2, 3, 7, 8-Tetrachlorodibenzo-P-Dioxin (TCDD) Induces Premature Senescence in Human and Rodent Neuronal Cells via ROS-Dependent Mechanisms
نویسندگان
چکیده
The widespread environmental pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a potent toxicant that causes significant neurotoxicity. However, the biological events that participate in this process remain largely elusive. In the present study, we demonstrated that TCDD exposure triggered apparent premature senescence in rat pheochromocytoma (PC12) and human neuroblastoma SH-SY5Y cells. Senescence-associated β-galactosidase (SA-β-Gal) assay revealed that TCDD induced senescence in PC12 neuronal cells at doses as low as 10 nM. TCDD led to F-actin reorganization and the appearance of an alternative senescence marker, γ-H2AX foci, both of which are important features of cellular senescence. In addition, TCDD exposure altered the expression of senescence marker proteins, such as p16, p21 and p-Rb, in both dose- and time-dependent manners. Furthermore, we demonstrated that TCDD promotes mitochondrial dysfunction and the accumulation of cellular reactive oxygen species (ROS) in PC12 cells, leading to the activation of signaling pathways that are involved in ROS metabolism and senescence. TCDD-induced ROS generation promoted significant oxidative DNA damage and lipid peroxidation. Notably, treatment with the ROS scavenger N-acetylcysteine (NAC) markedly attenuated TCDD-induced ROS production, cellular oxidative damage and neuronal senescence. Moreover, we found that TCDD induced a similar ROS-mediated senescence response in human neuroblastoma SH-SY5Y cells. In sum, these results demonstrate for the first time that TCDD induces premature senescence in neuronal cells by promoting intracellular ROS production, supporting the idea that accelerating the onset of neuronal senescence may be an important mechanism underlying TCDD-induced neurotoxic effects.
منابع مشابه
Ovarian endocrine disruption underlies premature reproductive senescence following environmentally relevant chronic exposure to the aryl hydrocarbon receptor agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin.
The aryl hydrocarbon receptor (AHR) mediates the effects of many endocrine disruptors and contributes to the loss of fertility in polluted environments. While previous work has focused on mechanisms of short-term endocrine disruption and ovotoxicity in response to AHR ligands, we have shown recently that chronic exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces premature reproducti...
متن کامل2,3,7,8-Tetrachlorodibenzo-p-dioxin induces premature activation of the KLF2 regulon during thymocyte development.
The environmental pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin) causes numerous and diverse toxic events via activation of the aryl hydrocarbon receptor, including atrophy of the thymus. Exposure to TCDD induces acute thymocyte cell loss, which occurs concomitantly with proliferation arrest and premature emigration of triple negative (TN; CD4(-), CD8(-), CD3(-)) T cell progenitor...
متن کاملEndocrine disruptor, dioxin (TCDD)-induced mitochondrial dysfunction and apoptosis in human trophoblast-like JAR cells.
The endocrine disruptor 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been demonstrated to disrupt hormone signalling, reduce fertility, interfere with embryo development and cause spontaneous miscarriage in humans. The precise mechanisms of its effects on early implantation in humans are still unclear. In this study, we examined the relationship between mitochondrial function and dioxin-induc...
متن کاملTCDD Induces the Hypoxia-Inducible Factor (HIF)-1α Regulatory Pathway in Human Trophoblastic JAR Cells
The exposure to dioxin can compromise pregnancy outcomes and increase the risk of preterm births. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has been demonstrated to induce placental hypoxia at the end of pregnancy in a rat model, and hypoxia has been suggested to be the cause of abnormal trophoblast differentiation and placental insufficiency syndromes. In this study, we demonstrate that the n...
متن کاملCorrelation of in vitro and in vivo growth suppression of MCF-7 human breast cancer by 2,3,7,8-tetrachlorodibenzo-p-dioxin.
The purpose of this study was to compare the effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the in vitro and in vivo 17 beta-estradiol (E2)-dependent growth of MCF-7 human breast cancer cells. In culture, a major component of postconfluent growth of MCF-7 cells is E2 dependent. In vivo, MCF-7 cells fail to grow as xenografts without exogenous E2 support. Thus the effect of TCDD on post...
متن کامل